SKRÓCONA INSTRUKCJA INSTALACJI

Kompensator Mocy Biernej SVG

Lista zawartości:

- Kompensator Mocy Biernej SVG
- Element Montażowy x 2 szt.
- Skrócona instrukcja instalacji
- Instrukcja montażu i obsługi
- Raport z inspekcji

Niniejsza instrukcja instalacji służy wyłącznie do szybkiego podłączenia, instalacji i uruchomienia. Bardziej szczegółowe informacje i ustawienia urządzenia znajdują się w instrukcji montażu i obsługi.

2 Okablowanie elektryczne

Kierunek montażu przekładników prądowych: P1 wskazuje stronę sieci zasilającej, P2 wskazuje stronę obciążenia

Aby uniknąć obrażeń ciała i uszkodzenia sprzętu, urządzenie należy podłączyć ściśle według rysunków projektowych, instrukcji instalacji sprzętu i procedur bezpieczeństwa elektrycznego.

Instrukcje bezpieczeństwa

Schemat podłączenia urządzenia

Przekładniki Prądowe

 Dopuszczalny współczynnik zewnętrznego przekładnika prądowego wynosi: 50:5 ~ 6000:5. Przekładnię można ustawić w zależności od zastosowanego prądu przekładnika prądowego w tym zakresie.
 Wymagana dokładność zewnętrznego przekładnika

prądowego jest powyżej klasy 0.5 (Sugerowany jest typ PP z dzielonym rdzeniem).

Specyfikacja przewodów

Тур	Napięcie znamionowe	Мос	Przekrój przewodów Cu	Prąd znamionowy
		5 kVar	2,5 mm²	~7 A
		10 kVar	4 mm²	~15 A
SVG		20 kVar	10 mm²	~30 A
	0.4 kV	30 kVar	16 mm²	~40 A
		50 kVar	25 mm²	~70 A
		75 kVar	50 mm²	~100 A
		100 kVar	70 mm²	~140 A

Specyfikacja wyłącznika

Sugerowana wartość prądowa wyłącznika to: 1.2~1.5 krotność prądu znamionowego SVG

Przekładniki prądowe od strony zasilania

Rozwiązanie to, zaleca się dla pracy pojedynczego kompensatora SVG

Przekładniki prądowe od strony obciążenia

Potwierdzenie okablowania

- Po montażu i okablowaniu urządzenia należy sprawdzić czy: 1. Wszystkie przewody są dobrze dokręcone.
- Wszystkie przewody są wyraźnie oznaczone i podpięte zgodnie ze schematem.
- 3. Jest zachowana właściwa kolejność faz pomiędzy L1/L2/L3 a CT1/CT2/CT3.
- 4. Jest zamknięty obwód wtórny przekładników prądowych pomiędzy CT1/CT1N, CT2/CT2N, CT3/CT3N.

5. Wszystkie podpięte przewody należy pozostawić z wystarczającymi zapasami długości aby zapobiec ich

- naprężeniom.
- 6. Wszystkie przewody są właściwie zamocowane.

Uwaga:

 Nieprawidłowe okablowanie może spowodować uszkodzenie urządzenia SVG. Proszę upewnić się czy przewody zostały podłączone zgodnie ze schematem.
 Niewłaściwa kolejność faz pomiędzy L1/L2/L3 a CT1/CT2/CT3 spowoduje niewłaściwą kompensację. Proszę upewnić się czy kolejność faz pomiędzy L1/L2/L3 i CT1/CT2/CT3 jest prawidłowa.

Po naciśnięciu przycisku "Parametry" otworzy się okienko "Wprowadź hasło". Wpisujemy hasło: **9345.**

Inter-		:- 0	
Jsta	wien	la S	DVG

Krok 1: Ustaw Tryb działania

0 – uruchamianie ręczne (po zaniku napięcia urządzenie nie uruchomi się automatycznie), 1 – start automatyczny po podaniu napięcia.

				29- 5-2024	20:41:2
		Kom.	🔵 Stan		Alarm
Tryb (2	Asymetria	0 I	Przekładnia	0:5
Pozycja CT	Obc.	∀ 0	Priorytet	Domyślne	∀ 0
Rząd WH	0	0	0	0	0
Amplituda	0	0	0	0	0
Menu	Р	oprzedni	Nastęj	pny	1/3

Krok 2: Ustaw pozycję przekładników prądowych i przekładnię

Pozycja CT: Obc. – przekładnik po stronie obciążenia, Sieć – przekładnik po stronie sieci zasilającej Przekładnia – wpisujemy przekładnię zastosowanego przekładnika prądowego (np. 50:5, 100:5, itd.)

	Kom.	🕘 Stan	A	larm (
Tryb 0	Asymetri	a 0 P	rzekładnia	0:5
Pozycja CT <mark>Obc.</mark>	∨ 0	Priorytet	Domyślne	∨ 0
Rząd WH	0	0	0	0
Amplituda 0	0	0	0	0

Krok 3: Ustaw priorytet

Domyślne – bez priorytetu, Komp. - kompensacja mocy biernej, Harm. – Kompensacja harmonicznych, Asymetria – Symetryzacja sieci.

		Van	Chan	29- 5-2024	20:4	1:5
		Kom.	- Stan		larm	
Tryb	0	Asymetria	0 I	Przekładnia	0:	5
Pozycja CT	Obc.	∀ 0	Priorytet	Domyślne	~	0
Rzad WH	0	0	0	Domyślne		
				Komp.		
Amplituda	0	0	0	Harm.		
Menu	P	oprzedni	Nastęj	Asymetria	-,-	

Krok 4: Ustaw współczynnik K_Q oraz pętlę sterowania K_Q: Tryb kompensacji: 0 bez kompensacji, 100 – pełna kompensacja (cała moc urządz.) – 0% do 100% Pętla ster. – 0 – wyłączona, 1 – załączona

K_Q	0	Pętla ster.	0
PF/Qind	0	PF2/Qpoj	0
Kod dostępu	9345	Korekcja fazy	0
Model	APF-100-0.	4	

Krok 5: Ustaw współczynniki mocy cos¢ dla mocy biernej indukcyjnej oraz pojemnościowej PF/Qind – Ustawianie współczynnika mocy cos¢ indukcyjny (999 odpowiada cos¢ 0.999) PF2/Qpoj – Ustawianie współcz. mocy cos¢ pojemnościowy (999 odpowiada cos¢ 0.999)

Krok 6: Uruchom kompensator mocy biernej SVG Wyjdź z menu "Parametry" naciskając przycisk "Menu". Naciśnij przycisk "Stan" a następnie przycisk "Start". Urządzenie uruchomi się. Będą wyświetlane w czasie rzeczywistym parametry przed i po kompensacji.

				30- 5-2024	19:35:35
		Kom.	O St	tan 🔵 A	larm 🤇
V Sieci	0.0 V	0.0 V	0.0 V	V DC	0.0 V
I Sieci	0.0 A	0.0 A	0.0 A	Częst.	0.00 Hz
I obcią.	0.0 A	0.0 A	0.0 A	Punkt neu V	0.0 V
I wyjścia	0.0 A	0.0 A	0.0 A	Obciążenie	0.0 %
PF obciąż.	0.000	0.000	0.000		
PF Sieci	0.000	0.000	0.000		
Menu		Reset	Nas	tepny	Start

Objaśnienie pętli sterowania

K_Q to tryb kompensacji mocy biernej w otwartej pętli, a K_Q to współczynnik wyjściowy kompensacji mocy biernej. K_Q ma następujące ustawienie: 0 oznacza brak kompensacji, 100 oznacza całkowitą kompensację (kompensacja od 0% do 100%).

2. Pętla sterowania:

Współczynnik kompensacji mocy biernej w pętli zamkniętej. O jest ustawieniem domyślnym (tryb kompensacji w pętli otwartej),

1 oznacza włączenie trybu kompensacji w pętli zamkniętej.

3. Docelowy wsp. mocy cos¢ (indukcyjny i pojemnościowy) Kompensator SVG będzie będzie dążył do osiągnięcia ustawionego współczynnika mocy. PF/Qind – Ustawianie współczynnika mocy cos¢ indukcyjny (999 odpowiada cos¢ 0.999) PF2/Qpoj – Ustawianie współcz. mocy cos¢ pojemnościowy (999 odpowiada cos¢ 0.999)

5 Opisy alarmów

Nazwa	Kod błędu	Opis
FPGA	0x80	Rozróżnienie źródła alarmu
Temp	0x40	Nadmierna temperatura urządzenia IGBT Przyczyny: awaria wentylatorów, niska prędkość obrotowa, zakurzenie radiatora, Rozwiązanie: rozwiązanie problemów z wentylatorami, odkurzenie urządzenia, czyszczenie, nałożenie nowej warstwy silikonu termicznego.
Częst.	0x20	Błąd częstotliwości Przyczyny: Nieprawidłowa częstotliwość sieci lub problem z napięciem fazy Rozwiązanie: Sprawdzenie okablowania
LV sieci	0x10	Niskie napięcie sieci zasilającej Przyczyny: Niskie napięcie sieciowe lub problem z bezpiecznikiem Rozwiązanie: Sprawdzenie napięcia sieciowego
LV DC	0x08	Niskie napięcie DC Przyczyny: Obciążenie udarowe, lub utrata napięcia sieciowego
OV sieci	0x04	Przepięcie w sieci zasilającej Przyczyny: Wysokie napięcie sieciowe występuje również po wyłączeniu urządzenia
Wentylator	0x02	Błąd wentylatora Przyczyny: Wentylator jest zablokowany, trudny rozruch lub uszkodzenie Rozwiązanie: Sprawdzenie wentylatorów, czyszczenie wentylatorów z kurzu lub wymiana wentylatorów
Wewn. Zas.	0x01	Wewnętrzna awaria zasilania Rozwiązanie: Sprawdzenie płyty zasilającej
DC N	0x8000	Przyczyny: Odchylenie napięcia stałego spowodowane obciążeniem udarowym lub usterką komponentu. Rozwiązanie: Zresetować lub uruchomić ponownie.
OI L1	0x4000	Przeciążenie fazy L1 w określonym przedziale czasu Rozwiązanie: Można to rozwiązać poprzez reset urządzenia. Jeśli występuje stale, sprawdź parametry zabezpieczeń i ustawienia parametrów oraż stan sprzetu.

OI L2	0x2000	P Przeciążenie fazy L2 w określonym przedziale czasu Rozwiązanie: Można to rozwiązać poprzez rese urządzenia. Jeśli występuje stale, sprawdź parametry zabezpieczeń i ustawienia parametrów oraz stan sprzętu.
OI L3	0x1000	Przeciążenie fazy L3 w określonym przedziale czasu Rozwiązanie: Można to rozwiązać poprzez rese urządzenia. Jeśli występuje stale, sprawdź parametr zabezpieczeń i ustawienia parametrów oraz stan sprzętu.
DC OV	0x800	Wysokie napięcie DC Rozwiązanie: Może to być spowodowane wpływen obciążenia lub szczytem napięcia w sieci energetycznej Można to rozwiązać poprzez zresetowanie i ponown uruchomienie urządzenia. Jeśli napięcie występuje stale, sprawdź napięcie w siec energetycznej, parametry zabezpieczeń i stan sprzętu.
Chwil. IL1	0x400	Chwilowe przeciążenie fazy L1 Rozwiązanie: Można to rozwiązać poprzez zresetowani lub ponowne uruchomienie urządzenia. Jeśli występuje ciągłe przeciążenie, sprawdź parametr zabezpieczeń i ustawienia parametrów, a także sta sprzętu.
Chwil. IL2	0x200	Chwilowe przeciążenie fazy L2 Rozwiązanie: Można to rozwiązać poprzez zresetowani lub ponowne uruchomienie urządzenia. Jeśli występuje ciągłe przeciążenie, sprawdź parametr zabezpieczeń i ustawienia parametrów, a także sta sprzętu.
Chwil. IL3	0x100	Chwilowe przeciążenie fazy L3 Rozwiązanie: Można to rozwiązać poprzez zresetowani lub ponowne uruchomienie urządzenia. Jeśli występuje ciągłe przeciążenie, sprawdź parametr zabezpieczeń i ustawienia parametrów, a także sta sprzętu.

6 Zobowiązanie gwarancyjne

Opis usług posprzedażnych

1. Zapewniamy bezpłatne zdalne wskazówki dotyczące instalacji i uruchomienia za pośrednictwem telefonu lub połączenia internetowego.

 Warunki gwarancyjne urządzenia szczegółowo opisane są w karcie gwarancyjnej kompensatora dostępnej na stronie internetowej www.lcpoland.com

3. Po okresie gwarancyjnym dostawca będzie nadal świadczył usługi posprzedażowe (w tym wskazówki online, wsparcie techniczne itp.)

4. Jeżeli wymienione części zamienne nie są już objęte gwarancją, dostawca dostarczy części zamienne po cenie nabycia, a koszt przesyłki będzie po stronie kupującego.

LC S.A. ul. Przemysłowa 27, 33-100 Tarnów Adres www: <u>www.lcpoland.com</u>, Email: <u>office@lcpoland.com</u> Tel.: +48 14 632 66 26 Tel. kom.: 502 087 151; 723 985 405